jueves, 18 de febrero de 2010

ARBOLES Y GRAFOS


En este contexto árboles y grafos se refiere a estructuras de datos que permiten organizar y mantener información en un computador. Esta forma se inspira una forma de organizar información con lápiz y papel usando nodos y flechas entre los nodos (a esas flechas también se les llama arcos, a los nodos también se les llama vértices). Los grafos y árboles en papel son apropiados por ejemplo para capturar sólo una parte de la información de objetos, situaciones y otros tipos de información (i.e son apropiados para abstraer).

En un computador además de permitir organizar información, resultan estructuras útiles para resolver ciertos tipos de problema (por ejemplo pueden emplearse árboles AVL para mantener información ordenada de forma eficiente).

Para jugar, entender y emplear mejor grafos (y árboles) varias personas (e.g Euler) han propuesto definiciones; a partir de estas definiciones y con ayuda de razonamientos lógicos han demostrado propiedades. Un mínimo de definiciones y de propiedades de grafos y árboles se presenta a continuación.

Note que para ver mejor esta página puede requerir configurar su navegador para que presente símbolos especiales, que se esperan con el tipo de letra de symbol. En el caso del navegador Mozilla, y suponiendo que en su sistema ya está instalado y configurado para Mozilla el tipo de letra para símbolos marque el botón de chequeo que permite que el documento use otras fuentes, en el menú apariencia del diálogo de preferencias (elemento del menú editar).

Árbol

En ciencias de la informática, un árbol es una estructura de datos ampliamente usada que imita la forma de un árbol (un conjunto de nodos conectados). Un nodo es la unidad sobre la que se construye el árbol y puede tener cero o más nodos hijos conectados a él. Se dice que un nodo a es padre de un nodo b si existe un enlace desde a hasta b (en ese caso, también decimos que b es hijo de a). Sólo puede haber un único nodo sin padres, que llamaremos raíz. Un nodo que no tiene hijos se conoce como hoja. Los demás nodos (tienen padre y uno o varios hijos) se les conoce como rama.

Un árbol se define como un tipo de grafo que no contiene ciclos, es decir es un grafo también acíclico, pero a su vez es conexo. Tal es el caso de los siguientes dos grafos en donde se puede notar que ninguno de los dos contiene repeticiones (ciclos).

Bosques de árboles.

Los bosques de árboles son un caso similar a los árboles, son acíclicos, pero no son conexos. Como ejemplo tenemos la siguiente figura.


Formalmente, podemos definir un árbol de la siguiente forma:

Caso base: un árbol con sólo un nodo (es a la vez raíz del árbol y hoja).
Un nuevo árbol a partir de un nodo nr y k árboles de raíces con elementos cada uno, puede construirse estableciendo una relación padre-hijo entre nr y cada una de las raíces de los k árboles. El árbol resultante de nodos tiene como raíz el nodo nr, los nodos son los hijos de nr y el conjunto de nodos hoja está formado por la unión de los k conjuntos hojas iniciales. A cada uno de los árboles Ai se les denota ahora subárboles de la raíz.
Una sucesión de nodos del árbol, de forma que entre cada dos nodos consecutivos de la sucesión haya una relación de parentesco, decimos que es un recorrido árbol. Existen dos recorridos típicos para listar los nodos de un árbol: primero en profundidad y primero en anchura. En el primer caso, se listan los nodos expandiendo el hijo actual de cada nodo hasta llegar a una hoja, donde se vuelve al nodo anterior probando por el siguiente hijo y así sucesivamente. En el segundo, por su parte, antes de listar los nodos de nivel n + 1 (a distancia n + 1 aristas de la raíz), se deben haber listado todos los de nivel n. Otros recorridos típicos del árbol son preorden, postorden e inorden:

El recorrido en preorden, también llamado orden previo consiste en recorrer en primer lugar la raíz y luego cada uno de los hijos en orden previo.
El recorrido en inorden, también llamado orden simétrico (aunque este nombre sólo cobra significado en los árboles binarios) consiste en recorrer en primer lugar A1, luego la raíz y luego cada uno de los hijos en orden simétrico.
El recorrido en postorden, también llamado orden posterior consiste en recorrer en primer lugar cada uno de los hijos en orden posterior y por último la raíz.
Finalmente, puede decirse que esta estructura es una representación del concepto de árbol en teoría de grafos. Un árbol es un grafo conexo y acíclico (ver también teoría de grafos y Glosario en teoría de grafos).

Tipos de árboles

-Árbol binario

En ciencias de la computación, un árbol binario es una estructura de datos en la cual cada nodo siempre tiene un hijo izquierdo y un hijo derecho. No pueden tener más de dos hijos (de ahí el nombre "binario"). Si algún hijo tiene como referencia a null, es decir que no almacena ningún dato, entonces este es llamado un nodo externo. En el caso contrario el hijo es llamado un nodo interno. Usos comunes de los árboles binarios son los árboles binarios de búsqueda, los montículos binarios y Codificación de Huffman.

Tipos de árboles binarios

Un árbol binario es un árbol con raíz en el que cada nodo tiene como máximo dos hijos.
Un árbol binario lleno es un árbol en el que cada nodo tiene cero o dos hijos.
Un árbol binario perfecto es un árbol binario lleno en el que todas las hojas (vértices con cero hijos) están a la misma profundidad (distancia desde la raíz, también llamada altura).

A veces un árbol binario perfecto es denominado árbol binario completo. Otros definen un árbol binario completo como un árbol binario lleno en el que todas las hojas están a profundidad n o n-1, para alguna n.

Un árbol binario es un árbol en el que ningún nodo puede tener más de dos subárboles. En un árbol binario cada nodo puede tener cero, uno o dos hijos (subárboles). Se conoce el nodo de la izquierda como hijo izquierdo y el nodo de la derecha como hijo derecho.

-Árbol binario de búsqueda auto-balanceable

En ciencias de la computación, un árbol binario de búsqueda auto-balanceable o equilibrado es un árbol binario de búsqueda que intenta mantener su altura, o el número de niveles de nodos bajo la raíz, tan pequeños como sea posible en todo momento, automáticamente. Esto es importante, ya que muchas operaciones en un árbol de búsqueda binaria tardan un tiempo proporcional a la altura del árbol, y los árboles binarios de búsqueda ordinarios pueden tomar alturas muy grandes en situaciones normales, como cuando las claves son insertadas en orden. Mantener baja la altura se consigue habitualmente realizando transformaciones en el árbol, como la rotación de árboles, en momentos clave.

Tiempos para varias operaciones en términos del número de nodos en el árbol n:

Operación Tiempo en cota superior asintótica
Búsqueda O(log n)
Inserción O(log n)
Eliminación O(log n)
Iteración en orden O(n)

Para algunas implementaciones estos tiempos son el peor caso, mientras que para otras están amortizados.

Estructuras de datos populares que implementan este tipo de árbol:

Árbol AVL
Árbol rojo-negro

-Árbol-B

En las ciencias de la computación, los árboles-B ó B-árboles son estructuras de datos de árbol que se encuentran comúnmente en las implementaciones de bases de datos y sistemas de archivos. Los árboles B mantienen los datos ordenados y las inserciones y eliminaciones se realizan en tiempo logarítmico amortizado.

B-árbol es un árbol de búsqueda que puede estar vacío o aquel cuyos nodos pueden tener varios hijos, existiendo una relación de orden entre ellos, tal como muestra el dibujo.

Un árbol-B de orden M (el máximo número de hijos que puede tener cada nodo) es un árbol que satisface las siguientes propiedades:

1.Cada nodo tiene como máximo M hijos.
2.Cada nodo (excepto raíz y hojas) tiene como mínimo M/2 hijos.
3.La raíz tiene al menos 2 hijos si no es un nodo hoja.
4.Todos los nodos hoja aparecen al mismo nivel.
5.Un nodo no hoja con k hijos contiene k-1 elementos almacenados.
6.Los hijos que cuelgan de la raíz (r1, ···, rm) tienen que cumplir ciertas condiciones:
1.El primero tiene valor menor que r1.
2.El segundo tiene valor mayor que r1 y menor que r2, etc.
3.El último hijo tiene valor mayor que rm.


-Árbol multicamino

Los árboles multicamino o árboles multirrama son estructuras de datos de tipo árbol usadas en computación.
Un árbol multicamino posee un grado g mayor a dos, donde cada nodo de información del árbol tiene un máximo de g hijos.


Sea un árbol de m-caminos A, es un árbol m-caminos si y solo si:

A está vacío
Cada nodo de A muestra la siguiente estructura: [nClaves,Enlace0,Clave1,...,ClavenClaves,EnlacenClaves]
nClaves es el número de valores de clave de un nodo, pudiendo ser: 0 <= nClaves <= g-1 Enlacei, son los enlaces a los subárboles de A, pudiendo ser: 0 <= i <= nClaves Clavei, son los valores de clave, pudiendo ser: 1 <= i <= nClaves Clavei < g =" (V,A,j" g1 =" (V1," v1 =" {1," a1 =" {(1," g2 =" (V2," v2 =" {1," a2 =" {(1," g3 =" (V3," v3 =" {1," a3 =" {">, <2,>, <2,> }

Gráficamente estas tres estructuras de vértices y arcos se pueden representar de la siguiente manera:


Algunos de los principales tipos de grafos son los que se muestran a continuación:

•Grafo regular: Aquel con el mismo grado en todos los vértices. Si ese grado es k lo llamaremos k-regular.

•Grafo bipartito: Es aquel con cuyos vértices pueden formarse dos conjuntos disjuntos de modo que no haya adyacencias entre vértices pertenecientes al mismo conjunto

•Grafo completo: Aquel con una arista entre cada par de vértices. Un grafo completo con n vértices se denota Kn.

•Un grafo bipartito regular: se denota Km,n donde m, n es el grado de cada conjunto disjunto de vértices.

•Grafo nulo: Se dice que un grafo es nulo cuando los vértices que lo componen no están conectados, esto es, que son vértices aislados.

•Grafos Isomorfos: Dos grafos son isomorfos cuando existe una correspondencia biunívoca (uno a uno), entre sus vértices de tal forma que dos de estos quedan unidos por una arista en común.

•Grafos Platónicos: Son los Grafos formados por los vértices y aristas de los cinco sólidos regulares (Sólidos Platónicos), a saber, el tetraedro, el cubo, el octaedro, el dodecaedro y el icosaedro.

Grafos Eulerianos.

Para definir un camino euleriano es importante definir un camino euleriano primero. Un camino euleriano se define de la manera más sencilla como un camino que contiene todos los arcos del grafo.

Teniendo esto definido podemos hablar de los grafos eulerianos describiéndolos simplemente como aquel grafo que contiene un camino euleriano. Como ejemplos tenemos las siguientes imágenes:

El primer grafo de ellos no contiene caminos eulerianos mientras el segundo contiene al menos uno.

Grafos Conexos.

Un grafo se puede definir como conexo si cualquier vértice V pertenece al conjunto de vértices y es alcanzable por algún otro. Otra definición que dejaría esto más claro sería: "un grafo conexo es un grafo no dirigido de modo que para cualquier par de nodos existe al menos un camino que los une".


Recorrido de un grafo.

Recorrer un grafo significa tratar de alcanzar todos los nodos que estén relacionados con uno que llamaremos nodo de salida. Existen básicamente dos técnicas para recorrer un grafo: el recorrido en anchura; y el recorrido en profundidad.

•Recorrido en anchura: El recorrido en anchura supone recorrer el grafo, a partir de un nodo dado, en niveles, es decir, primero los que están a una distancia de un arco del nodo de salida, después los que están a dos arcos de distancia, y así sucesivamente hasta alcanzar todos los nodos a los que se pudiese llegar desde el nodo salida.

•Recorrido en profundidad: el recorrido en profundidad trata de buscar los caminos que parten desde el nodo de salida hasta que ya no es posible avanzar más. Cuando ya no puede avanzarse más sobre el camino elegido, se vuelve atrás en busca de caminos alternativos, que no se estudiaron previamente.


Representación de grafos en programas.

Hay tres maneras de representar un grafo en un programa: mediante matrices, mediante listas y mediante matrices dispersas.

•Representación mediante matrices: La forma más fácil de guardar la información de los nodos es mediante la utilización de un vector que indexe los nodos, de manera que los arcos entre los nodos se pueden ver como relaciones entre los índices. Esta relación entre índices se puede guardar en una matriz, que llamaremos de adyacencia.

•Representación mediante listas: En las listas de adyacencia lo que haremos será guardar por cada nodo, además de la información que pueda contener el propio nodo, una lista dinámica con los nodos a los que se puede acceder desde él. La información de los nodos se puede guardar en un vector, al igual que antes, o en otra lista dinámica.

•Representación mediante matrices dispersas: Para evitar uno de los problemas que teníamos con las listas de adyacencia, que era la dificultad de obtener las relaciones inversas, podemos utilizar las matrices dispersas, que contienen tanta información como las matrices de adyacencia, pero, en principio, no ocupan tanta memoria como las matrices, ya que al igual que en las listas de adyacencia, sólo representaremos aquellos enlaces que existen en el grafo.


Dígrafo (grafo dirigido).

A un grafo dirigido se le puede definir como un grafo que contiene aristas dirigidas, como en el siguiente caso.


Aplicaciones de los dígrafos

Una de las aplicaciones mas importantes es de hallar el camino mas corto hacia un destino, ya sea de una ciudad a otra, de unos departamentos a otros, para el recorrido de árboles, sirve para la representación de algoritmos, etc. Un ejemplo de esto es la tarea de freír un huevo.

Grado de un grafo.

•Grado de incidencia positivo: El grado de incidencia positivo de un nodonjes el número de arcos que tienen como nodo inicial anj. Ejemplo: El grado de incidencia de 1 es igual a 3.
•Grado de incidencia negativo: El grado de incidencia negativo de un nodonjes el número de arcos que terminan ennj. Ejemplo: El grado de incidencia negativo de 1 es igual a 1.
•Grado de un nodo: Paradigrafoses el grado de incidencia positivo menos el grado de incidencia negativo del nodo. Ejemplo: El grado de 1 es igual a 3 –1 = 2, el grado del nodo 4 es 2 –2 = 0. Para grafos no dirigidos es el número de líneas asociadas al nodo.

Ciclo de un grafo.

Ciclo: Es una cadena finita donde el nodo inicial de la cadena coincide con el nodo terminal de la misma.

•Ciclo simple: Es el ciclo que a su vez es una cadena simple.
Estructuras no lineales: Grafos

Las estructuras de datos no lineales se caracterizan por no existir una relación de adyacencia, entre sus elementos, es decir, un elemento puede estar relacionado con cero, uno o más elementos.

La estructura no lineal de datos más general es el grafo donde sus nodos pueden relacionarse de cualquier manera sin una relación de orden predefinida.

Estructuras no lineales: Grafos Entre las múltiples aplicaciones que tienen estas estructuras podemos mencionar:•Para modelar diversas situaciones tales como: sistemas de aeropuertos, flujo de tráfico, y responder a preguntas como: ¿Qué tiempo es más corto?, ¿Cómo es más barato?, o ¿Qué camino es más corto?. •Los grafos también son utilizados para realizar planificación de actividades, tareas del computador, planificar operaciones en lenguaje de máquinas para minimizar tiempo de ejecución.¿Qué tarea debo hacer primero?. •Para representar circuitos eléctricos, de aguas etc... , y preguntar, están todas las componentes conectadas.

Grafos Los grafos pueden ser utilizados como la estructura básica para múltiples aplicaciones en el área de la Computación. Un grafo G (N, A, f) es un conjunto no vacío, donde:•N={n1, n2, ... ,nM) es el conjunto de nodos o vértices•A={a1, a2, ..., a K} es el conjunto de aristas y•La función f : R →ΜΧΜindica los pares de nodos que estαn relacionados.•Grafos Dirigidos (Dígrafos) En estos grafos, las aristas que comunican dos nodos tienen un único sentido, una arista puede ir de x a y, pero no de y a x. Se expresa gráficamente con flechas que indican el sentido de la relación entre cada par de nodos.

Grafos•Grafos no dirigidos En estos grafos, las aristas que comunican dos nodos tienen dos sentidos. Si una arista va de x a y, la misma arista va de y a x. Se expresa gráficamente por líneas. La representación gráfica de un grafo se define con un círculo o rectángulo para los nodos y las relaciones con líneas o flechas según sea un grafo no dirigido o un dígrafo, respectivamente.

4 comentarios:

  1. :D muy buena información además de que esta muy completo :)

    ResponderEliminar
  2. gracias que buena página me ayudara bastante la información

    ResponderEliminar
  3. Muy buena la información. Gracias

    ResponderEliminar
  4. Esta info me ayudo con mi tarea, gracias

    ResponderEliminar